مبرهنة القيمة الوسطى هي نتيجة لمبرهنة رول.إن التغير الجزئي لكل دالة ذات متغير حقيقي متواصلة و قابلة للاشتقاق يقابل ميل إحدى مماساتها. و بأكثر دقة : النص : لكل دالة ذات متغير حقيقي f : [a, b] -> R حيث a < b، متواصلة على النطاق المغلق [a, b] و قابلة للاشتقاق على النطاق المفتوح ]a, b[، تؤكد مبرهنة القيمة الوسطى على وجود عدد حقيقي c موجود في النطاق ]a, b[ بحيث :
في الحقيقة، و تبعا لهذه الشروط، تكون قيمة الدالة في a و b واحدة. و بتطبيق مبرهنة رول، فإنها تملك نقطة معينة c في ]a ; b[ و نظرا لأن المشتقة في c تساوي الصفر فإننا نجد المعادلة السابقة.
هندسيا، تقترح علينا مبرهنة القيمة الوسطى أنه لكل مستقيم يقطع منحنى قابل للاشتقاق، يوجد مستقيم مماس لهذا المنحنى مواز للمستقيم القاطع.
لتكن f : [a, b] -> R دالة ذات قيم حقيقية حيث a < b. إذا كان :
فإن .
الإستدلال :
نطبق مبرهنة القيمة الوسطى و نضع |f'(x)| < k.
و لتقريب الصورة نستطيع أن نصور المبرهنة كما يلي : "إذا كانت السرعة الآنية لسيارة ما غير قادرة على تجاوز سرعة 120 كم/س، فإن معدل سرعتها لا يمكنه ذلك."
تطبّق هذه المبرهنة في حالة دالتين متواصلتين على [a ; b]، قابلتان للاشتقاق على ]a ; b[. و هو يؤكد وجود عدد حقيقي c من النطاق ]a ; b[ بحيث
هندسيا، تعني هذه المعادلة أن كل منحنى لدالة من في قابلة للاشتقاق، يملك مماسا موازيا لإحدى حباله. في حالة مخالفة g' للصفر على ]a ; b[، يمكن أن تكتب المعادلة
و تحت هذه الصيغة، تستعمل المبرهنة للاستدلال على قاعدة اوبيتال.
الإستدلال :
يمكن إعادة صياغة مبرهنة القيمة الوسطى في شكل تكامل. لكل دالتين ذوات متغيّر حقيقي، u و v متواصلتين على النطاق [a ; b]، حيث v مخالفة
للصفر على [a ; b]، يوجد عدد حقيقي c من ]a ، b[ حيث
و هذه الكتابة منطقية نظرا لأن الدوال المتواصلة متكاملة محليا حسب ريمان.