قاعدة أوبيتال في التحليل الرياضي تستعمل الاشتقاق بهدف إيجاد النهايات لصيغ غير محددة في معظم الكسور. تحمل هذه القاعدة اسم الرياضي الفرنسي قييوم دي أوبيتال.
فهرس
|
فليكن a عددا حقيقيا أو حتى ، بحيث تكون الدوال الحقيقية f و g معرّفة بقرب a و g مخالفة للصفر. لو حاولنا أن نحدد نهاية الكسر f / g في a، بحيث يقترب كل من البسط و المقام، كلاهما نحو الصفر أو كلاهما نحو اللانهاية، فإننا نستطيع أن نشتقهما و نحدد نهاية كسر المشتقات. و لو كانت موجودة، فإن القاعدة تؤكد أن هذه النهاية
ستكون مساوية للنهاية التي نبحث عنها.
النص المبسط : في كتاب أوبيتال، القاعدة الموجودة هي تلك المستعملة عادة في حالة دالتين قابلتان للاشتقاق في a و حيث يكون الكسر معرّفا :
.
و لكن، يمكن استعمال قاعدة أوبيتال في حالات أعمّ.
التعميم الأول على دوال، بحيث غير موجود بالضرورة.
هذه النتيجة صالحة مهما كانت النهاية L حقيقية أو لانهائية.
التعميم الثاني على دوال تكون نهاياتها في a لانهائية.
هذه النتيجة صالحة سواء أكانت L نهاية حقيقية أو لا نهائية.
نفس القواعد موجودة لدوال معرّّفة على ]b ; a[.
تبقى المبرهنات صالحة عند تعويض a بـ .
في حالة « 0 / 0 »، عادة ما نستعمل الصيغة الأولى :
في حالة « ∞/∞ »، نستعمل الصيغة الثانية :
أحيانا، يجب استعمال قاعدة أوبيتال مرات عديدة للوصول إلى النتيجة :
و قد يمكن إيجاد بعض النهايات، التي لا تظهر في شكل نهايات كسور، باستعمال هذه القاعدة :
نلاحظ أن الصيغ المعممة لا تعطينا إلا شروطا كافية لوجود النهاية. و بالتالي توجد حالات تكون فيها نهاية كسر المشتقات غير موجودة، في حين أن نهاية كسر الدوال
موجودة :
في حين أن :
في النهاية، سنعتني بالتأكد من أن g'(x) مخالفة للصفر بقرب a، بمعنى آخر أن g لا تتذبذب كثيرا حول نهاياتها، و إلا فإن القاعدة لا يمكن تطبيقها. على سبيل المثال، إذا كان :
، فإن
و بالتالي
و لكن
الإستدلال على الصيغة البسيطة
الإستدلال على التعميم الأول
الإستدلال على التعميم الثاني
للنهايات في ، يكفي أن نضع x = 1/t و نحاول أن نجد نهاية في 0.