الرئيسيةبحث

جيب التمام

جيب التمام في الرياضيات هو النسبة بين الضلع المحادي لزاوية والوتر في مثلث ذو زاوية قائمة ، بحيث يكون الوتر هو الضلع المقابل للزاوية القائمة.

في الرياضيات، تعتبر التوابع مثلثية أو الدوال المثلثية دوال لزاوية هندسية، و هي دوال مهمة عندما نريد دراسة مثلث أوعرض ظواهرِ دورية. يمكن تعريف هذه الدوال كنسبة لأضلاع مثلث قائم الذي يَحتوي تلك الزاويةَ أَو بشكل أكثر عمومية كإحداثيات على دائرة مثلثية أو دائرة واحدية (unit circle) .

الدوال المثلثية هي دوال ترتبط بالزاوية، وهي مهمة في دراسة المثلثات وتمثيل الظواهر المتكررة (كالموجات). ويمكن تعريف الدوال المثلثية على أنهم نسب بين ضلعين في مثلث قائم فيه الزاوية المعنية، او ، وبشكل أوسع. كنسبة بين إحداثيات نقاط على دائرة الوحدة، ويعتبر دوما عند الإشارة إلى المثلثات ان الحديث يدور حول مثلث في سطح مستوي (مستوى إحداثي أو إقليدي) ، وذلك ليكون مجموع الزوايا 180 درجة دائما. وهناك ثلاثة دوال مثلثية أساسية هي:

• جا(sin) أو الجيب ، ويساوي النسبة بين الضلع المقابل للزاوية مقسوما على الوتر.

• جتا(cos) أو جيب التمام ، ويساوي النسبة بين الضلع المجاور للزاوية مقسوما على الوتر.

• ظا(tan=sin/cos) او الظل ، ويساوي النسبية بين الضلع المقابل للزاوية والضلع المجاور لها.

• ظل التمام(cotan) ، ويساوي النسبية بين الضلع المجاور للزاوية والضلع المقابل لها.

تمثيل مبياني لدالة جيب التمام

صورة:CosinusWithMaple.jpeg


في الدائرة المثلثية


يعتبر جيب تمام راوية في الدائرة المثلثية هو الاسقاط العمودي على محور الافاصيل.

وهو دالة زوجية حيث ان


Cos(-x)=Cos(x)---a.