الرئيسيةبحث

ميكانيك هاملتوني

الميكانيك الهاميلتوني Hamiltonian mechanics هو إعادة صياغة للميكانيك الكلاسيكي تم إيجاده من قبل ويليام روان هاميلتون عام 1833. نشأ ميكانيك هاميلتون من ميكانيك لاغرانج ، و هوصياغة أخرى للميكانيك الكلاسيكي أوجده جوزيف لويس لاغرانج Joseph Louis Lagrange عام 1788. لكن بجميع الحوال يمكن استقاق ميكانيك هاملتون دون الرجوع لميكانيك لاغرانج باستخدام الفضاءات السمبلكتية symplectic spaces.

إعادة صياغة ميكانيك لاغرانج

اعتمادا على ميكانيك لاغرانج ، تكون معادلات الحركة المستندة على الإحداثيات المعممة

\left\{\,   q_j | j=1,...,N \,\right\}.

و التي تطابق السرعات :

\left\{\, \dot{q}_j | j=1,...,N \,\right\}.

يمكن لنا كتابة اللاغرانجي

L(q_j, \dot{q}_j, t),

يهدف ميكانيك الهاميلتوني إلى استبدال متغيرات السرعة المعممة بمتغيرات العزم المعممة أو ما يدعى بالعزم المقترن أو المقابل (conjugate) :

من اجل كل سرعة معممة هناك ما يقابلها من العزم المقترن الذي يكتب كما يلي :

p_j = {\partial L \over \partial \dot{q}_j}.

في جملة إحداثيات ديكارتية, العزم المعمم هو بالضبط العزم الفيزيائي الخطي . أما في جملة احداثيات قطبية فإن العزم المعمم المقابل للسرعة الزاوية يصبح العزم الزاوي ، في جملة احداثية افتراضية توجد صياغات أخرى لإيجاد العزم المعمم .


الهاميلتوني هو عبارة [[]]:

H\left(q_j,p_j,t\right) = \sum_i \dot{q}_i p_i - L(q_j,\dot{q}_j,t).

إذا كانت معادلات التحويل المعرفة للإحداثيات المعممة مستقلة عن الزمن t ، فيمكن أن نقول ان الهاميلتوني H مساو للطاقة الكلية E = T + V.


كل طرف من تعريف الهاميلتوني of H ينتج تفاضلا :

\begin{matrix}
dH &=& \sum_i \left[ \left({\partial H \over \partial q_i}\right) dq_i + \left({\partial H \over \partial p_i}\right) dp_i \right] + \left({\partial H \over \partial t}\right) dt\qquad\qquad\quad\quad  \\  \\
  &=& \sum_i \left[ \dot{q}_i\, dp_i + p_i\, d\dot{q}_i - \left({\partial L \over \partial q_i}\right) dq_i - \left({\partial L \over \partial \dot{q}_i}\right) d\dot{q}_i \right] - \left({\partial L \over \partial t}\right) dt.
\end{matrix}

باستبدال التعريف السابق للعزم المقترن ضمن المعادلة و مطابقة معاملات المعدلة ، نستخرج قوانين الحركة في الميكانيك الهاميلتوني



{\partial H \over \partial q_j} = - \dot{p}_j, \qquad
{\partial H \over \partial p_j} = \dot{q}_j, \qquad
{\partial H \over \partial t  } = - {\partial L \over \partial t}.

معادلات هاميلتون تشكل معادلات تفاضلية من المرتبة الأولى ، لذا هي أسهل حلا من معادلات لاغرانج التي تعطي معادلات تفاضلية من المرتبة الثانية. لكن العمليات التي تقود إلى معادلات الحركة أكثر صعوبة فبداية علينا البدء من الإحداثيات المعممة و ميكانيك لاغرانج لنقوم بتشكيل الهاميلتوني ، ثم علينا تحويل كل قيمة لسرعة معممة إلى عزم مقترن ، لنقوم بعد ذلك باستبدال السرع المعممة في الهاميلتوني بقيم العزم المقترن.