فهرس
|
الجملة في مجموعة حروف و رموز لها معنى, مثال:
من الممكن دراسة هذه العبارات من وجهات نظر مختلفة, مثلا المتغيرات تأخد قيما متعددة نرمز لها عادة بـ" X "، أو " س " بالعربية. كما يمكن دراسة صحة أو خطأ العبارة.
تصبح إذا أمكن معرفة صحة أو خطأ العبارة نسمي عبارة كل نص رياضي له معنى و يكون إما صحيحاو إما خاطئا أما الدالة العبرية ( خاصية لمتغير) فهي كل نص رياضي له معنى و يحتوي على متغير و يصبح عبارة كلما عوضنا المتغير بقيمة معينة
جًمل منطقية [الجمل الفعلية مفيدة] يمكن الحكم عليها بالصح أوالخطأ وليس كليهما القضية المنطقية { تعريف} هي جملة خبرية مفيدة يحتمل معناها الصواب أو الخطأ وليس كليهما من أمثلة الجمل التي تكون قضايا 1) 2+3=7 2) صنعاء عاصمة اليمن 3) مجموع زوايا المثلث 250 ْ ملاحظة : ليس من الضروري أن تكون الجملة صحيحة جًمل ليست منطقية [الجمل الإسمية] والتي لا يمكن الحكم عليها بالصح أوالخطأ من أمثلة الجمل التي لا تكون قضايا الجمل التي تيدأ أستفهام – سؤال – تعجب – نداء – طلب ... بصورة عامة كل الجمل التي لا يمكن الحكم عليها بالصح أوالخطأ مثل : 1) ما أجمل السماء ! 2) كم الساعة ؟
نفي العبارة P هي عبارة صحيحة إذا كانت P خاطئة, و خاطئة إذا كانت P صحيحة. و نرمز لنفي P ب .
P | |
0 | 1 |
1 | 0 |
عطف العبارتين p و Q تكون صحيحة فقط إذا كانت العبارتين معا صحيحتين. ونرمز له ب
P | Q | |
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
فصل العبارتين p و Q تكون صحيحة فقط إذا كانت إحدى العبارتين صحيحة. ونرمز له ب
P | Q | |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
تكون العبارة P تستلزم Q ، خاطئة فقط إذا كانت P صحيحة و Q خاطئة.
و نرمز لها ب: و هي تكافئ العبارة: .
P | Q | |
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 0 |
1 | 1 | 1 |
تكافؤ العبارتين و هو , و نرمز له ب:
P | Q | |
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
القوانين المنطقية عبارة عن جمل مكونة من عدة عبارات مرتبطة فيما بينها بروابط منطقية و تكون دائما صحيحة بغض النظر عن صحة أو خطأ العبارات المكونة لها.
أمثلة:
المثالين الأخيرين, يعرفان بقوانين مرجان morgan.
الدالة العبارة, هي تطبيق من مجموعة قيم المتغيرات نحو مجموعة مكونة من العنصرين صحيح و خطأ.
مثال:
بالنسبة للعبارة: "x عدد صحيح طبيعي, x+3=10." نحصل على دالة من إلى بحيث:
هناك نوعان وجودية و كونية.
نرمز للوجودية بالرمز .
نرمز للكونية بالرمز .
عندما يكون هناك وجوديات, النفي يعبر عنه ب:
مع E مجموعة تتضمن الخاصية A.
هناك علاقة بين نظرية المجموعات و المنطق.
نسمي جزء A(أو مجموعة صغرى) لمجموعة E كل عناصر المجموعة A التي تنتمي إلى E.
و نكتب:
نقول أن المجموعة A ضمن المجموعة E, يكافئ أن كل عنصر x من A, يستلزم أن xينتمي إلى E.
كل مجموعة لها عدة أجزاء, و هذه الأجزاء تكون مجموعة الأجزاء.
المجموعة A تساوي المجموعة B, تكافئ لكل x من x :E من A يكافئ x من B.
متمم الجزء A, هو الجزء B الذي عناصره لا تنتمي إلى A.
علق حاتم على هذه فقال :
المتممة أمر نسبي
قبل أن نتكلم عن متممة مجموعة نحتاج إلى أن نتفق على ما يسمى " المجموعة الشاملة "
مثال
إذا كانت
المجموعة الشاملة = ش
ش = { 1 ،9 ، 5 ، 3 ، 2 }
أ = { 1 ، 9 }
متمم أ هو ب
ب = { 5 ، 3 ، 7 }
لا حظ عناصر ب لا تنتمي إلى أ
المقال كله يحتاج إلى كتابة أدق وأوضح مع استبعاد الرموز 1 ، صفر ووضع ص خ بدلا منها
ص = صحيحة
خ = خاطئة
حاتم الفرائضي 10:54، 4 نوفمبر 2007 (UTC)
x ينتمي إلى A, يكافئ x لا ينتمي إلى B.
تقاطع المجموعتين A و B, هي مجموعة العناصر المشتركة C, التي نرمز لها ب: .
x من C يكافئ: x من A و x من B.
اتحاد المجموعتين A و B, هي المجموعة C التي عناصرها تنتمي إلى أحد المجموعتين, و التي نرمز لها ب: .
x من C يكافئ: x من A أو x من B.
A^(B+c)=(A^B)+(A^C)>>> برهن
بمكن تحويل كل جمل المنطق الرياضي إلى دوائر كهربية تستخدم في الحاسب الآلي لإجراء العمليات الحسابية والمنطقية ويمكن الاطلاع على تفاصيل ذلك هنا لمزيد من المعلومات
يفيد فهم المنطق الرياضي في إجراء عمليات البرمجة المعقدة والتي تحوي الجمل الشرطية المتداخلة اللازمة لتحقيق هدف معين أو حل مشكلة محددة بواسطة البرنامج.