مبرهنة الكاشي خاصة بهندسة المثلثات و هي تعميم لمبرهنة فيتاغورس في المثلثات التي ليست لها زاوية قائمة: و هي تربط الضلع الثالث لمثلث بالضلعين الآخرين و جيب تمام الزاوية المكونة لهما.
نعتبر مثلث ABC, حيث نستعمل المفاهيم الموجودة في الشكل1: من جهة α, β و γ بالنسبة للزوايا, و من جهة أخرى a, b و c بالنسبة للأضلاع. مبرهنة الكاشي هي:
.
فهرس |
في كتاب العناصر لإقليدس, نجد مقاربة هندسية لتعميم مبرهنة فيتاغورس: نجد في الكتاب2 العبارتين 12 و 13, حيث يتم التطرق لحالة مثلث عادي بزاوية منفرجة و في مثلث عادي بزوايا حادة. لكن عدم وجود الدوال المثلثية (آنذاك) و كذلك الجبر أدى إلى استعمال المساحات.
فالعبارة 12 : مربع الضلع الذي يحمل الزاوية المنفرجة أكبر من مربعي الضلعين الآخرين: و باستعمال المثلث ABC بزاوية منفرجة في A و ارتفاع H (شكل2) الصيغة تصبح: AB² = CA² + CB² + 2 CA CH.
و كان يجب انتظار العرب المسلمين لتظهر الدوال المثلثية لرؤية المبرهنة في تطورها: فالفلكي و الرياضي البتاني عمم نتيجة إقليدس في الهندسة الفضائية و التي مكنت من القيام بحساب المسافات بين النجوم. و في نفس الوقت تم إنشاء جداول للدوال المثلثية و التي أتاحت للكاشي صياغة المبرهنة في شكلها النهائي.
مبرهنة الكاشي في تعميم لمبرهنة فيتاغورس, عندما تكون الزاوية :
γ قائمة, أو عندما يكون: cosγ = 0, المبرهنة تصبح:,
و عكسيا.
النظرية تستعمل في المثلثات(انظر شكل. 3)حل مثلث,أي تحديد:
من بين طرق البرهنة حساب المساحات، حيث يتم ملاحظة ما يلي:
الشكل 4أ (جانبه) يقسم سباعي بكيفيتين مختلفتين حيث تتم البرهنة في حالة زاوية حادة. يدخل هنا :
تساوي المساحات في اليمين و اليسار يعطي
الشكل 4ب (جانبه) يقسم سداسي بكيفيتين مختلفتين بكيفية برهن في حالة زاوية منفرجة. الشكل يبين
تساوي المساحتين يمينا و يسارا يعطي
الشكل 5 (جانبه) يبين طريقة البرهنة باستعمال مبرهنة فيتاغورس في مثلث قائم الزاوية ناتج عن طريق الارتفاع :
بنفس الطريقة نبرهن في حالة مثلث بزاوية منفرجة